III B.Tech II Semester(R05) Supplementary Examinations, April/May 2011

Time: 3 hours

Answer any FIVE questions All questions carry equal marks
 * * * *

1. (a) What is Fourier's law of heat conduction? Explain.
(b) A brick ($\mathrm{k}=1.2 \mathrm{~W} / \mathrm{m} \mathrm{K}$) wall 0.15 m thick separates hot combusition gases of a furnace from the outside ambient air which is at $25^{\circ} \mathrm{C}$. The outer surface temperature of the brick wall is found to be $100^{\circ} \mathrm{C}$. If the natural convection heat heat transfer coefficient on the brick wall is $20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and its emisssivity is 0.8 , calculate the inner surface temperature of the brick wall.
2. (a) Derive the general heat conduction equation for n composite slabs.
(b) A plane wall is constructed of a material having thermal conductivity that varies as the square of the temperature according to the relation $\mathrm{K}=\mathrm{K}_{0}\left(1+\beta \mathrm{T}^{2}\right)$. Derive an expression for the heat transfer in such a wall.
3. (a) Explain the lumped heat capacity analysis?
(b) An aluminum sphere weighing 5.5 kg and initially at a temperature of $290^{\circ} \mathrm{C}$ is suddenly immersed in a fluid at $15^{\circ} \mathrm{C}$. The convective heat transfer coefficient in $59 \mathrm{~W} / \mathrm{m}^{2} \mathrm{k}$. Estimate the time required to cool the aluminum to $95^{\circ} \mathrm{C}$.
4. (a) Air at a pressure of $8 \mathrm{kN} / \mathrm{m}^{2}$ and a temperature 0 \& $250^{\circ} \mathrm{C}$ flows over a flat plate 0.3 m wide and 1 m long at a velocity of $8 \mathrm{~m} / \mathrm{s}$. If the plate is to be maintained at a temperature of $78^{\circ} \mathrm{C}$. Estimate the rate of heat to be removed continuously from the plate.
(b) Discuss briefly effect of turbulence on boundary layers.
5. (a) What is the criterion for deciding laminar or turbulent flow in case of free convection?
(b) Air flow through a long rectangular duct $(30 \mathrm{~cm} \times 20 \mathrm{~cm})$ used in air conditioning maintains the outer duct surface temperature at $5^{\circ} \mathrm{C}$. If the duct is installed vertically in a room at $25^{\circ} \mathrm{C}$. find the heat gain by the duct.
6. Saturated steam at atmospheric pressure condenses on a horizontal copper tube of 25 mm inner diameter and 29 mm outer diameter through water flows at the rate of $25 \mathrm{~kg} / \mathrm{min}$ entering at $30^{\circ} \mathrm{C}$ and leaving at $70^{\circ} \mathrm{C}$. Making necessary assumptions, calculate
(a) The condensing heat transfer coefficient
(b) The inside heat transfer coefficient
(c) The length of the tube.
7. (a) How is the mean temperature difference between the two fluids in a multi-pass heat exchanger estimated? What is the correction factor?
(b) Sketch the temperature distribution of hot and cold fluids along the length of heat exchanger for parallel flow arrangement and derive the expression for LMTD.
8. A thermocouple of emissivity 0.9 is used to measure the temperature of a gas flowing in large duct whose walls are at $200^{\circ} \mathrm{C}$. The thermocouple records a temperature of $500^{\circ} \mathrm{C}$. Calculate the error between the thermocouple temperature and the gas temperature taking $\mathrm{h}=140$ $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$. If the thermocouple is now placed inside a shield $(\varepsilon=0.3)$ having inside diameter five times the outer diameter of the couple, and the thermocouple still records $500^{\circ} \mathrm{C}$, calculate the reduction in error between thermocouple temperature and the gas temperature.
